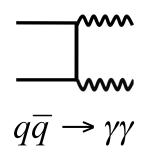
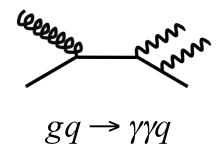
Measurement of the Cross Section for Prompt Isolated Diphoton Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

Costas Vellidis

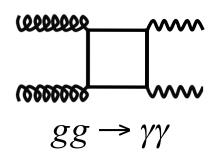
FNAL


- Prompt photons = emitted from quarks in hard scattering processes, as opposed to coming from neutral hadron decays (reducible background in cross section measurements)
- The cleanest probe of QCD elementary particles, can be measured with **high precision** in modern calorimeters
- Probe for searching new phenomena γγ is signature of possible heavy resonance decays

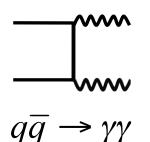
 Measurements of cross sections are needed to test perturbative (and non-perturbative) QCD predictions in order to improve our understanding of the production mechanism


 Improvements of searches for new resonances require a good understanding of the QCD production mechanism (irreducible background in resonance searches)

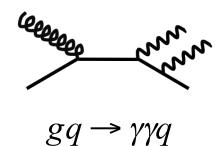
Tevatron and LHC: ideal places to conduct γγ measurements — well performing colliders, high precision detectors


Hard QCD ("direct" γγ production):

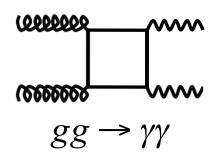
Born: Dominant at the Tevatron



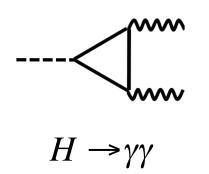
Brems: Suppressed by the isolation requirement



"Box": Dominant at the LHC


Hard QCD ("direct" γγ production):

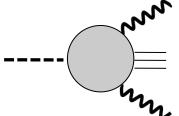
Born: Dominant at the Tevatron



Brems: Suppressed by the isolation requirement

"Box": Dominant at the LHC

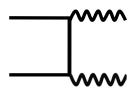
Possible heavy resonance decays:



Low-mass Higgs boson (most sensitive channel at LHC for m_H<125 GeV/c²)

 $G^* \to \gamma \gamma$

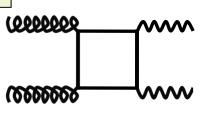
Extra dimensions



$$W \rightarrow \gamma \gamma + X$$

SUSY

Hard QCD ("direct" γγ production):

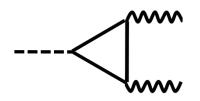

Better control on these processes $[\sigma \sim O(10 \text{ pb}) \text{ at the Tevatron}]$

$$q\overline{q} \rightarrow \gamma \gamma$$

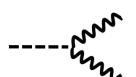
Celeber Line

$$gq \rightarrow \gamma \gamma q$$

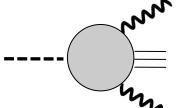
$$gg \rightarrow \gamma\gamma$$


Born: Dominant at the Tevatron

Brems: Suppressed by the isolation requirement

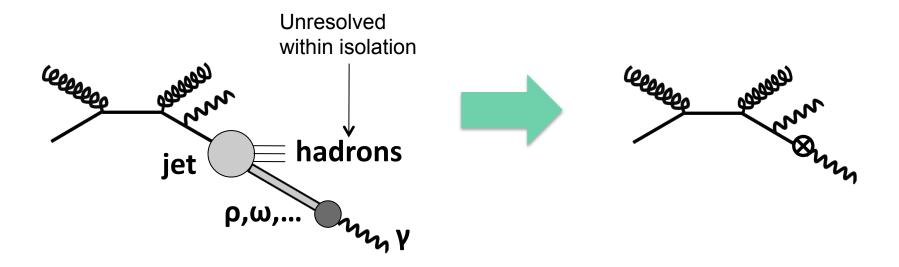

"Box": Dominant at the LHC

Possible heavy resonance decays:


→ More sensitive searches for such processes [σ × BR ~ O(1 fb) at the Tevatron]

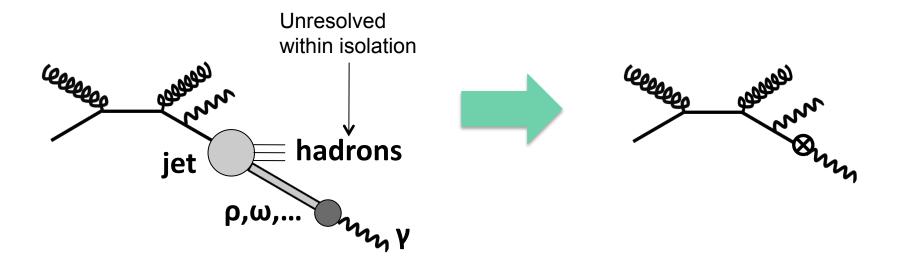
$$H \rightarrow \gamma \gamma$$

$$G^* \rightarrow \gamma \gamma$$


$$W \rightarrow$$

Low-mass Higgs boson (most sensitive channel at LHC for m_H<125 GeV/c²)

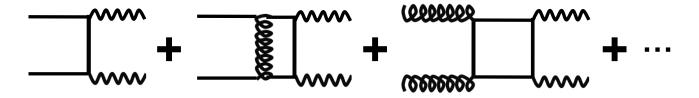
Extra dimensions


SUSY

Aspects of the theory: Fragmentation

• The pQCD cross section is divergent when q and γ are collinear → Non-perturbative feature of the theory, handled with phenomenological "fragmentation functions" derived e.g. from the VMD model [L. Bourhis *et al.*, Eur. Phys. J. C 2, 529 (1998)].

Aspects of the theory: Fragmentation

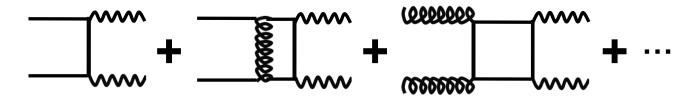


- The pQCD cross section is divergent when g and y are collinear → Non-perturbative feature of the theory, handled with phenomenological "fragmentation functions" derived e.g. from the VMD model [L. Bourhis *et al.*, Eur. Phys. J. C **2**, 529 (1998)].
- Fragmentation contributions can be suppressed by
 - $ightharpoonup P_{T}(\gamma\gamma) < M(\gamma\gamma)$

$$ightharpoonup$$
 experimental photon isolation requirements $\longrightarrow E_{\rm T}^{\rm iso} = \sum_{\substack{{\rm partons\ or\ hadrons\ within\ R<0.4}}} E_{\rm T} - E_{\rm T\gamma}$

Aspects of the theory: Resummation

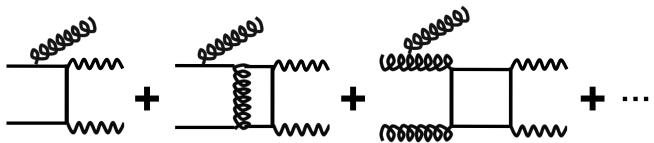
The cross section for



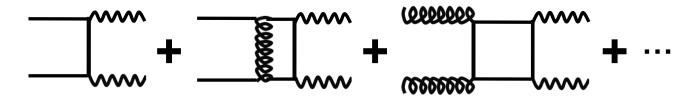
contains singular terms at $P_{\rm T}(\gamma\gamma) \rightarrow 0$ and $M(\gamma\gamma) \neq 0$ of the form

$$\frac{\alpha_s^n}{P_T^2(\gamma\gamma)} \ln^m \frac{M^2(\gamma\gamma)}{P_T^2(\gamma\gamma)} \quad \text{or} \quad -\alpha_s^n \delta(\vec{P}_T(\gamma\gamma)) \qquad n = 1, \dots \infty \qquad m = 0, \dots, 2n-1$$

Aspects of the theory: Resummation

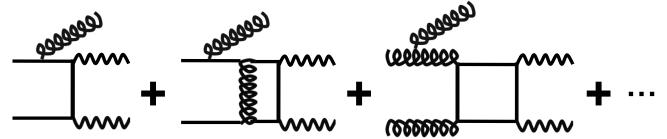

The cross section for

contains singular terms at $P_{\rm T}(\gamma\gamma) \rightarrow 0$ and $M(\gamma\gamma) \neq 0$ of the form


$$\frac{\alpha_s^n}{P_T^2(\gamma\gamma)} \ln^m \frac{M^2(\gamma\gamma)}{P_T^2(\gamma\gamma)} \quad \text{or} \quad -\alpha_s^n \delta(\vec{P}_T(\gamma\gamma)) \qquad n = 1, \dots \infty \qquad m = 0, \dots, 2n-1$$

Need to add soft gluon emission:

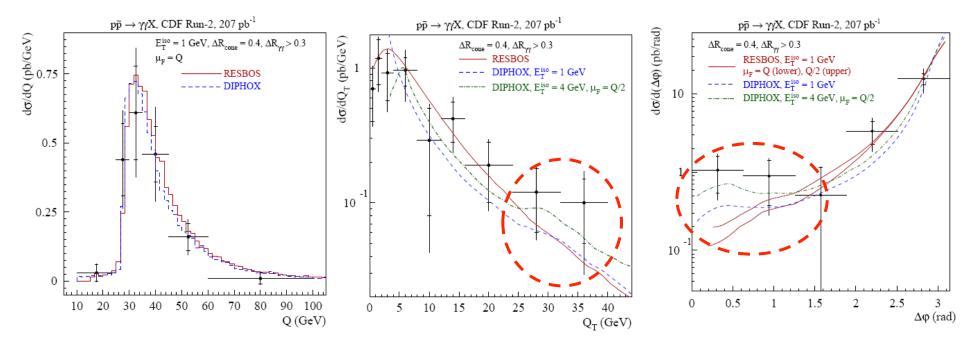
Aspects of the theory: Resummation


The cross section for

contains singular terms at $P_{\rm T}(\gamma\gamma) \rightarrow 0$ and $M(\gamma\gamma) \neq 0$ of the form

$$\frac{\alpha_s^n}{P_T^2(\gamma\gamma)} \ln^m \frac{M^2(\gamma\gamma)}{P_T^2(\gamma\gamma)} \quad \text{or} \quad -\alpha_s^n \delta(\vec{P}_T(\gamma\gamma)) \qquad n = 1, \dots \infty \qquad m = 0, \dots, 2n-1$$

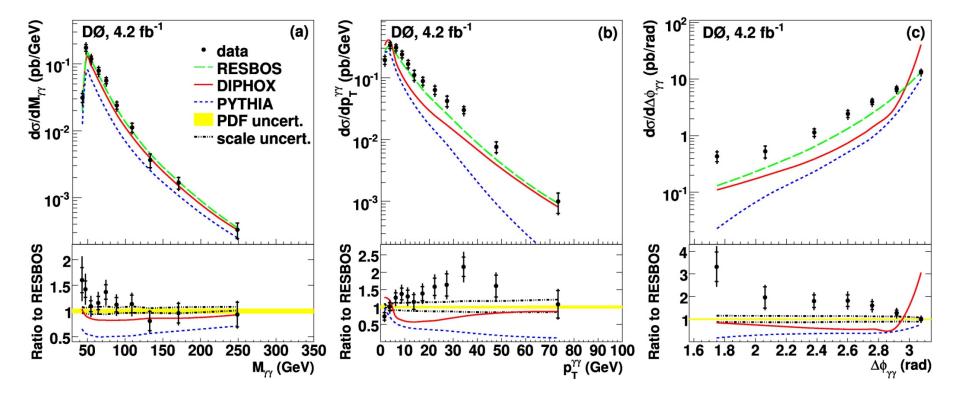
Need to add soft gluon emission:



- Two ways of doing this:
 - Approach the $P_{\rm T}(\gamma\gamma) \to 0$ limit with an analytically calculated cross section derived from the sum of the singular terms for all n and m = 1,2,3 (next-to-next-to-leading log accuracy, NNLL), which is then smoothly matched to the perturbative cross section at high $P_{\rm T}(\gamma\gamma)$
 - Use parton showering to add gluon radiation in a Monte Carlo simulation framework which effectively resums the cross section for all n and m = 1 (leading-log accuracy, LL)

- **DIPHOX**: Fixed-order NLO calculation including non-perturbative fragmentation [T. Binoth *et al.*, Phys. Rev. D **63**,114016 (2001)]
- RESBOS: Low-P_T analytically resummed calculation matched to high-P_T NLO [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]
- PYTHIA LO parton-shower calculation
 [T.Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001)]

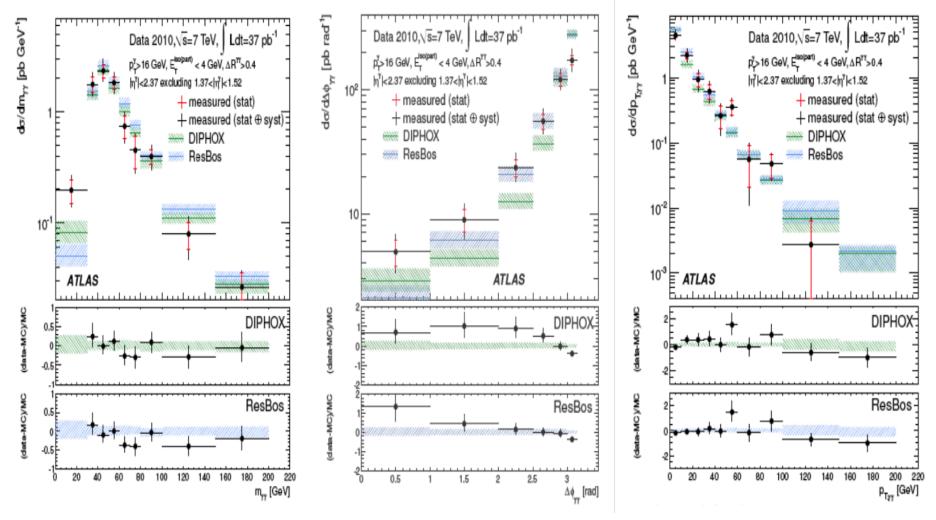
Previously published measurements


- CDF publication in Run II with 207 pb⁻¹. PRL 95, 022003 (2005) PRD 76, 013009 (2007)
- Event selection: $p_{T1(2)}>14(13)$ GeV, $|\eta_{1,2}|<0.9$, $\Delta R(\gamma,\gamma)>0.3$, $E_T^{iso}<1$ GeV.

• $P_T(\gamma\gamma)>25$ GeV region in data dominated by events with $P_T(\gamma\gamma)>M(\gamma\gamma)$ and $\Delta\phi(\gamma,\gamma)<\pi/2$ \Rightarrow potentially large fragmentation contributions.

Previously published measurements

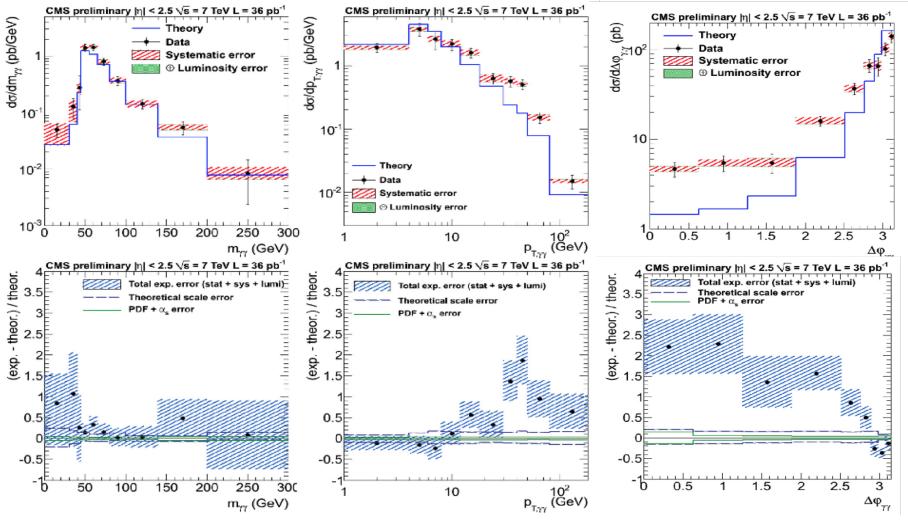
- D0 publication in Run II with 4.2 fb⁻¹
- PLB 690, 108 (2010)
- $p_{T1(2)} > 21(20) \text{ GeV/c}, |\eta_{1,2}| < 1, \Delta R(\gamma,\gamma) > 0.4, (E_{tot}^{R=0.4} E_{em}^{R=0.2}) / E_{em}^{R=0.2} < 0.1, P_{T}(\gamma\gamma) < M(\gamma\gamma) = 0.00$



- Good agreement between data and RESBOS for M_{yy}>50 GeV/c²
- Need for a resummed calculation
- Data spectrum harder than predicted
- Observable nearly insensitive to experimental effects
- Supports conclusion from P_T
 (γγ) measurement

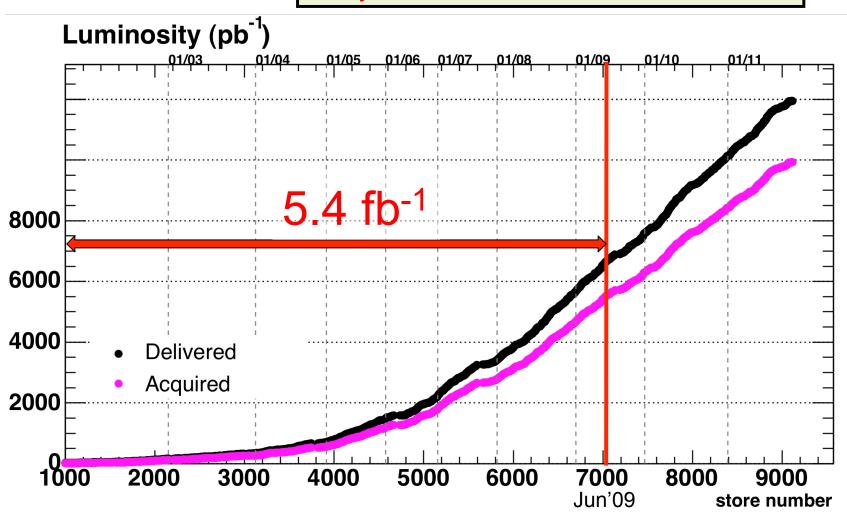
^(*) Overall normalization uncertainty (7.3%) not included in data error bars.

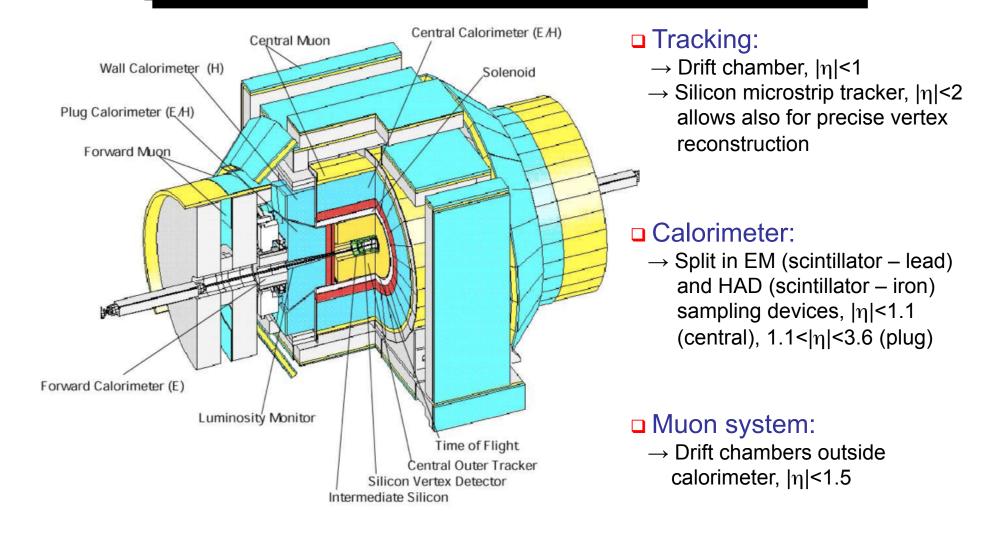
Recent measurements at the LHC


- Preliminary ATLAS results using 37 pb⁻¹, CERN-PH-EP-2011-08, EPS-HEP2011
- Event selection: $p_{T1(2)}$ >16 GeV, $|\eta_{1,2}|$ <2.37, $\Delta R(\gamma,\gamma)$ >0.4, E_t^{iso} <3 GeV.

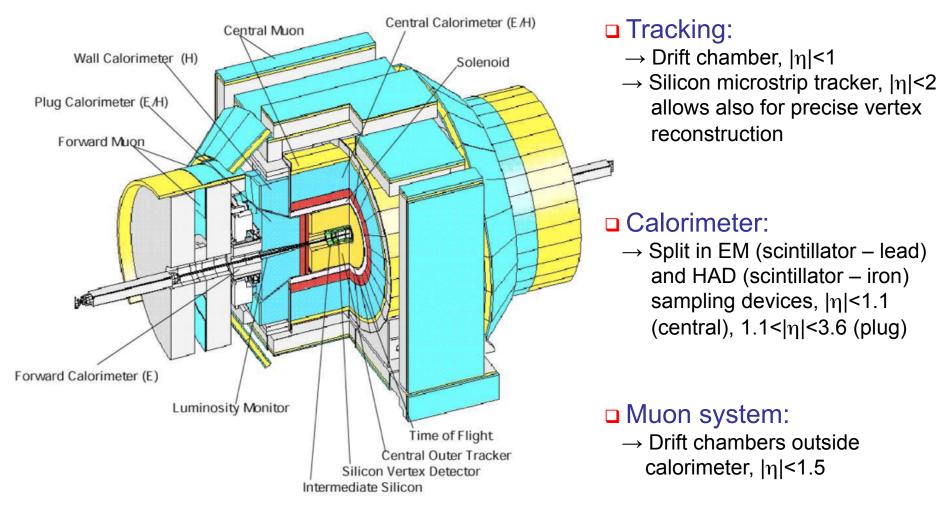
Confirm the discrepancies observed at the Tevatron

Recent measurements at the LHC

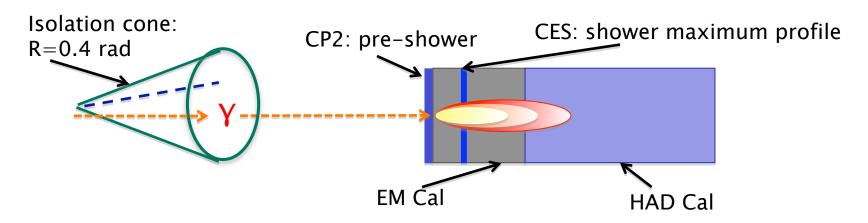

- Preliminary CMS results using 36 pb⁻¹, CMS QCD 10-035, EPS-HEP2011, APS-DPF2011
- Event selection: $p_{T1(2)} > 23(20)$ GeV, $|\eta_{1,2}| < 2.5$, $\Delta R(\gamma, \gamma) > 0.45$


• Similar conclusions, large data – DIPHOX discrepancy for $\Delta \phi(\gamma, \gamma) < \pi/2$

Data set


Many thanks to the Accelerator Division!

CDF detector overview


CDF detector overview

□ Central electromagnetic calorimeter ($|\eta|$ <1.1):

- \rightarrow Tower segmentation: $\Delta \eta \times \Delta \phi \cong 0.1 \times 15^{\circ}$
- \rightarrow Resolution: $\sigma(E)/E = 13.5\%/\sqrt{E(\text{GeV}) \oplus 1.5\%}$
- → Proportional chambers (CES) at 6 rad. lengths depth (shower max) give location and 2D profile of the EM showers (position resolution ~2 mm for 50 GeV γ)

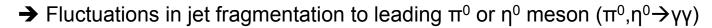
Photon identification and event selection

- Used dedicated diphoton triggers with optimized efficiency
- Photons were selected offline from EM clusters, reconstructed within a cone of radius R=0.4 in the η - ϕ plane, and requiring:
 - Fiducial to the central calorimeter: $|\eta|$ <1.1 Avoids divergence in fixed-order calculations
 - $E_T \ge 17 \text{ GeV } (1^{\text{st}} \gamma \text{ in the event}), 15 \text{ GeV } (2^{\text{nd}} \gamma)$
 - Isolated in the calorimeter: $I_{cal} = E_{tot}(R=0.4) E_{EM}(R=0.4) \le 2 \text{ GeV}$ $\Delta R(\gamma, \gamma) \ge 0.4$
 - Low HAD fraction: $E_{HAD}/E_{EM} \le 0.055 + 0.00045 \times E_{tot}/GeV$
 - At most one track in cluster with $p_T^{trk} \le 1 \text{ GeV/c} + 0.005 \times E_T^{\gamma}/c$
 - Shower profile consistent with predefined patterns: $\chi^2_{CES} \le 20$
 - Only one high energy CES cluster: E_T of 2nd CES cluster ≤ 2.4 GeV + 0.01× E_T

Imply that

$$\frac{d\sigma}{dX} = \frac{N_{\gamma\gamma}}{\varepsilon \cdot A \cdot L \cdot \Delta}$$

Background subtraction

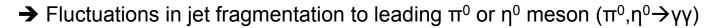

Jets misidentified as photons: dijet and γ+jet

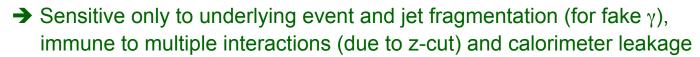
 \rightarrow Fluctuations in jet fragmentation to leading π^0 or η^0 meson $(\pi^0, \eta^0 \rightarrow \gamma \gamma)$

$$\frac{d\sigma}{dX} = \frac{N_{\gamma\gamma}}{\varepsilon \cdot A \cdot L \cdot \Delta}$$

Background subtraction

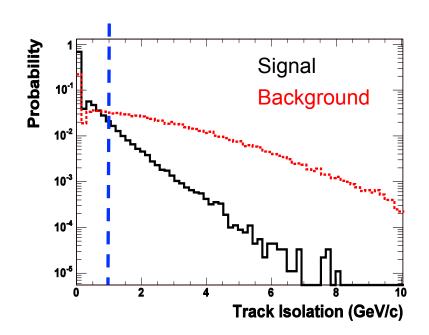
Jets misidentified as photons: dijet and γ +jet


- → Good resolution in low-E_T region, where background is most important
- → Uses charged particles only


$\frac{d\sigma}{dX} = \frac{N_{\gamma\gamma}}{\varepsilon \cdot A \cdot L \cdot \Delta}$

Background subtraction

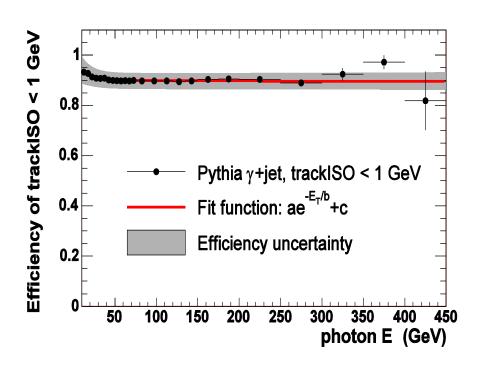
Jets misidentified as photons: dijet and γ+jet

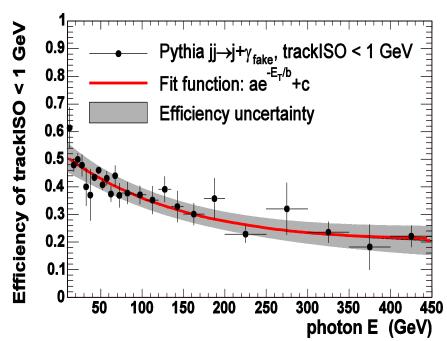


→ Good resolution in low-E_T region, where background is most important

→ Uses charged particles only

Substantially different shape of signal and background I_{trk} distributions can be used to characterize true and fake γ




technique!

 $|z_{vtx} - z_{trk}| < 5cm$

tracks in R<0.4

Signal-background discrimination using the track isolation

For a single γ , a weight can be defined to characterize it as signal or background:

$$W = \frac{\mathcal{E} - \mathcal{E}b}{\mathcal{E}s - \mathcal{E}b}$$

→ ε = 1 (0) if
$$I_{trk} < (≥)$$
 1 GeV/c

$$\rightarrow$$
 ϵ_s = signal efficiency for I_{trk} < 1 GeV/c

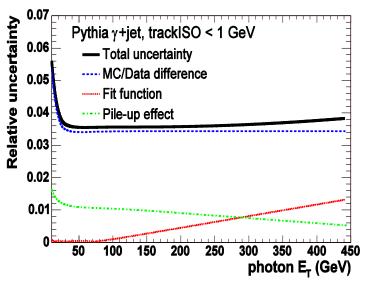
$$\rightarrow$$
 ϵ_b = background efficiency for I_{trk} < 1 GeV/c

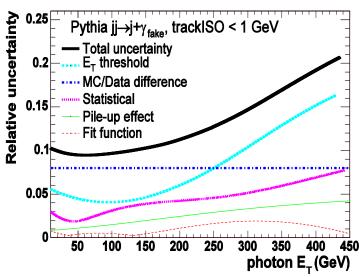
Both modeled by
$$ae^{-E_T/b} + c$$

Background subtraction: 4×4 matrix method

 Use the track isolation cut for each photon to compute a per-event weight under the different hypotheses (γγ, γ+jet and dijet):

$$\begin{pmatrix} w_{jj} \\ w_{j\gamma} \\ w_{\gamma j} \\ w_{\gamma \gamma} \end{pmatrix} = E^{-1} \times \begin{pmatrix} w_{ff} \\ w_{fp} \\ w_{pf} \\ w_{pf} \\ w_{pp} \end{pmatrix} \text{ Both photons fail }$$
 Leading fail, trailing passes Leading passes, trailing fails Both photons pass

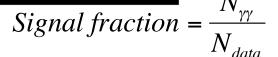

$$E = \begin{pmatrix} (1 - \epsilon_{j1})(1 - \epsilon_{j2}) & (1 - \epsilon_{j1})(1 - \epsilon_{\gamma 2}) & (1 - \epsilon_{\gamma 1})(1 - \epsilon_{j2}) & (1 - \epsilon_{\gamma 1})(1 - \epsilon_{\gamma 2}) \\ (1 - \epsilon_{j1})\epsilon_{j2} & (1 - \epsilon_{j1})\epsilon_{\gamma 2} & (1 - \epsilon_{\gamma 1})\epsilon_{j2} & (1 - \epsilon_{\gamma 1})\epsilon_{\gamma 2} \\ \epsilon_{j1}(1 - \epsilon_{j2}) & \epsilon_{j1}(1 - \epsilon_{\gamma 2}) & \epsilon_{\gamma 1}(1 - \epsilon_{j2}) & \epsilon_{\gamma 1}(1 - \epsilon_{\gamma 2}) \\ \epsilon_{j1}\epsilon_{j2} & \epsilon_{j1}\epsilon_{\gamma 2} & \epsilon_{\gamma 1}\epsilon_{j2} & \epsilon_{\gamma 1}\epsilon_{\gamma 2} \end{pmatrix}$$

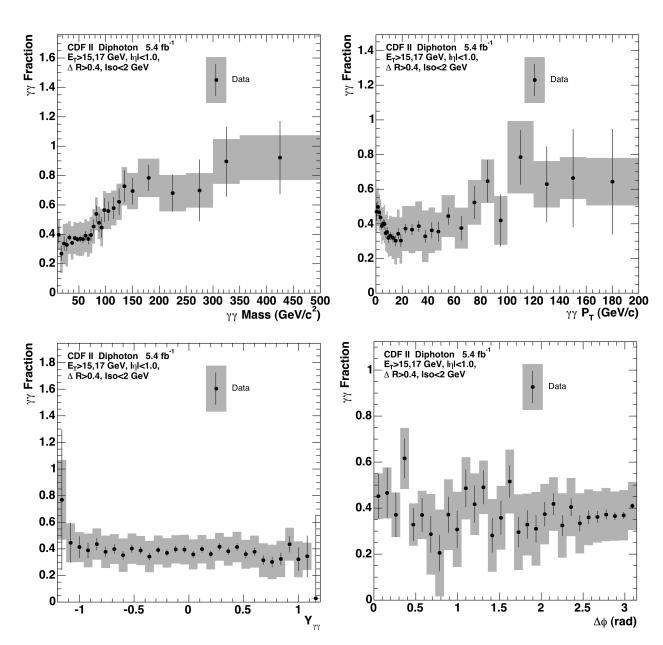

- For instance, if leading passes/trailing fails, the event weight is:
- Estimated number of prompt diphoton events bin-by-bin is given by the sum of $\gamma\gamma$ weights:

$$N_{\gamma\gamma} = \sum_{i=1}^{N_{data}} w_{\gamma\gamma}^{i}$$

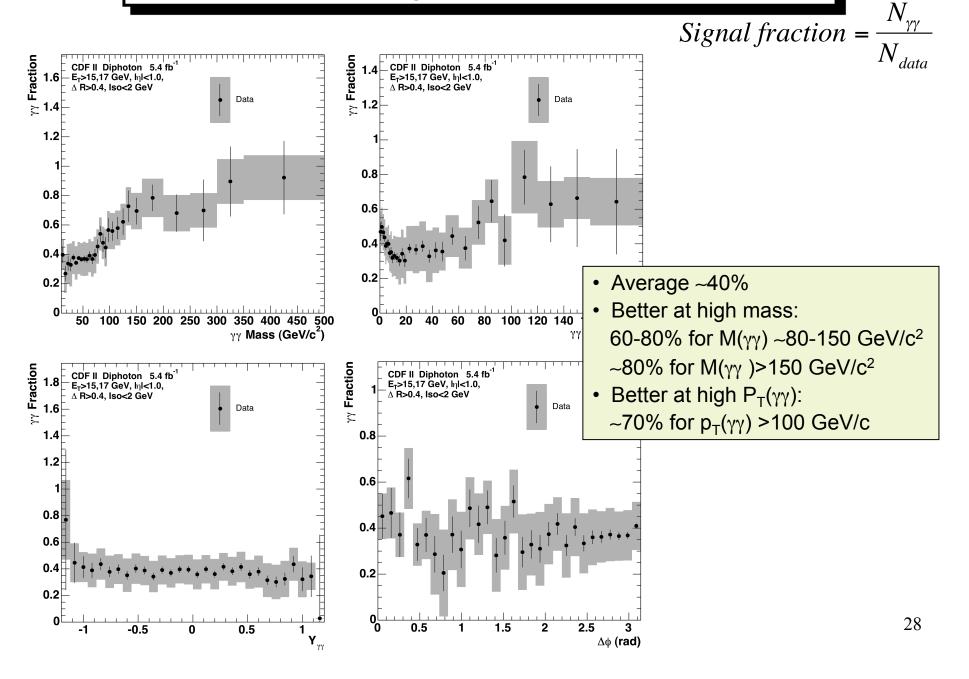
$$\begin{pmatrix} w_{ff} \\ w_{fp} \\ w_{pf} \\ w_{nn} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Background subtraction: 4×4 matrix method





Systematic uncertainties:


- $\Delta \varepsilon_s = \pm 3.5\%$
- $\Delta \varepsilon_{\rm b} = \pm 6\%$ for E_T < 150 GeV
- → Leading sources of systematic uncertainty in the cross section

Signal fraction

Signal fraction

Acceptance × efficiency

 $\frac{d\sigma}{dX} = \frac{N_{\gamma\gamma}}{\varepsilon \cdot A \cdot L \cdot \Delta}$

Defined as:

Number of events with two reconstructed EM clusters passing all cuts

Number of events with two generator-level photons passing kinematic and isolation cuts

- Estimated using detector- and trigger-simulated and reconstructed PYTHIA events
- Procedure iterated to match PYTHIA to the data
- Corrected to parton level for comparison with NLO theory

Acceptance × efficiency

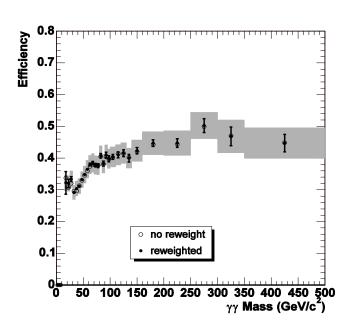
 $\frac{d\sigma}{dX} = \frac{N_{\gamma\gamma}}{\varepsilon \cdot A \cdot L \cdot \Delta}$

Defined as:

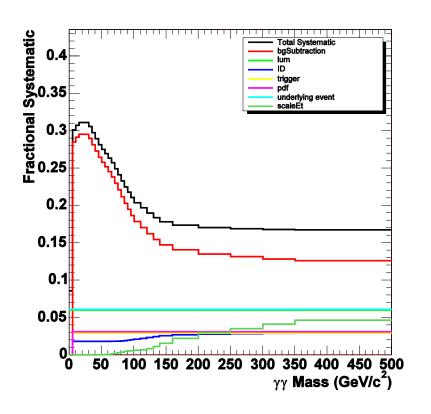
Number of events with two reconstructed EM clusters passing all cuts

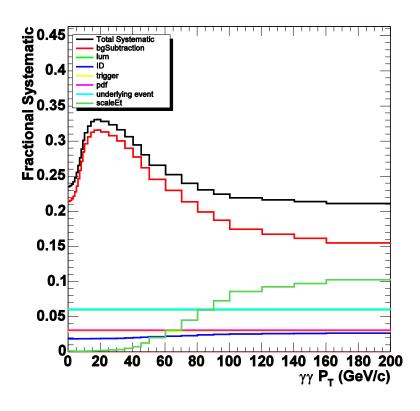
Number of events with two generator-level photons passing kinematic and isolation cuts

- Estimated using detector- and trigger-simulated and reconstructed PYTHIA events
- Procedure iterated to match PYTHIA to the data
- Corrected to parton level for comparison with NLO theory


Uncertainties in the efficiency estimation:

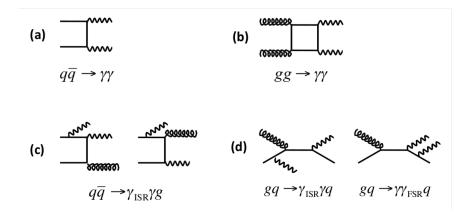
- 3% from material uncertainty
- 1.5% from the EM energy scale
- 3% from trigger efficiency uncertainty
- 6% (3% per photon) from underlying event (UE) correction


Average efficiency ~40%

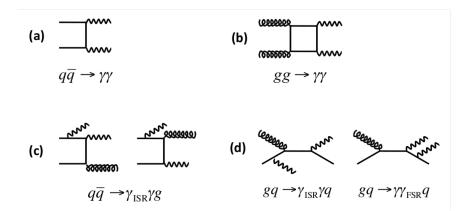

Total systematic uncertainty: ~7-15%

Comparable statistical uncertainty

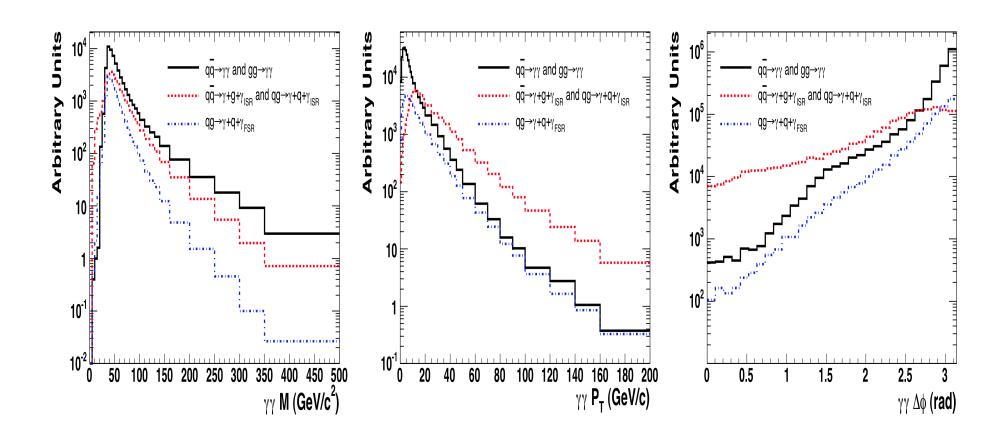
Experimental systematic uncertainties



- Total systematic uncertainty ~15-30%, smoothly varying with the kinematic variables considered
- Main source is background subtraction, followed by overall normalization (efficiencies: 7%; integrated luminosity: 6%; UE correction: 6%)


- **DIPHOX**: Fixed-order NLO calculation including non-perturbative fragmentation [T. Binoth *et al.*, Phys. Rev. D **63**,114016 (2001)]
- RESBOS: Low-P_T analytically resummed calculation matched to high-P_T NLO [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]
- PYTHIA 6.2.16 LO parton-shower calculation (no k-factor applied) [T.Sjöstrand *et al.*, Comp. Phys. Comm. **135**, 238 (2001)]

- **DIPHOX**: Fixed-order NLO calculation including non-perturbative fragmentations [T. Binoth *et al.*, Phys. Rev. D **63**,114016 (2001)]
- RESBOS: Low-P_T resummed calculation smoothly matched to high-P_T NLO [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]
- PYTHIA 6.2.16 LO parton-shower calculation (no k-factor applied)
 [T.Sjöstrand *et al.*, Comp. Phys. Comm. **135**, 238 (2001)]
 Two separate calculations, one involving (a b) only ("PYTHIA γγ") and one involving (a d) ("PYTHIA γγ+γj"), are compared with the data


- **DIPHOX**: Fixed-order NLO calculation including non-perturbative fragmentations [T. Binoth *et al.*, Phys. Rev. D **63**,114016 (2001)]
- RESBOS: Low-P_T resummed calculation smoothly matched to high-P_T NLO [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]
- PYTHIA 6.2.16 LO parton-shower calculation (no k-factor applied)
 [T.Sjöstrand *et al.*, Comp. Phys. Comm. **135**, 238 (2001)]
 Two separate calculations, one involving (a b) only ("PYTHIA γγ") and one involving (a d) ("PYTHIA γγ+γj"), are compared with the data

Contributions from double radiation in dijet events were examined and found small (~3% of the total) → not included in this analysis

Matrix element and radiation contributions in PYTHIA

Initial state radiation (ISR) makes the $P_T(\gamma\gamma)$ and $\Delta\phi(\gamma,\gamma)$ spectra of PYTHIA harder

- Experimental kinematic and isolation cuts are also applied to all theoretical calculations compared with the data:
 - Central photons required: |y| < 1.1
 - $E_T \ge 17 \text{ GeV } (1^{\text{st}} \gamma \text{ in the event}), 15 \text{ GeV } (2^{\text{nd}} \gamma)$ Imply that $\Delta R(\gamma, \gamma) \ge 0.4$
 - Isolated in the calorimeter: $I_{cal} = E_{tot}(R=0.4) E_{EM}(R=0.4) \le 2 \text{ GeV}_{-}$

Theoretical predictions

- Experimental kinematic and isolation cuts are also applied to all theoretical calculations compared with the data:
 - Central photons required: |y| < 1.1
 - $E_T \ge 17 \text{ GeV } (1^{\text{st}} \gamma \text{ in the event}), 15 \text{ GeV } (2^{\text{nd}} \gamma)$ Imply that
 - Isolated in the calorimeter: $I_{cal} = E_{tot}(R=0.4) E_{EM}(R=0.4) \le 2 \text{ GeV}$

Applied at the parton level in DIPHOX and RESBOS

→ can only approximate the experimental isolation

Theoretical predictions

- Experimental kinematic and isolation cuts are also applied to all theoretical calculations compared with the data:
 - Central photons required: |y| < 1.1
 - $E_T \ge 17 \text{ GeV } (1^{\text{st}} \gamma \text{ in the event}), 15 \text{ GeV } (2^{\text{nd}} \gamma)$
 - Isolated in the calorimeter: $I_{cal} = E_{tot}(R=0.4) E_{EM}(R=0.4) \le 2 \text{ GeV}$ $\Delta R(\gamma, \gamma) \ge 0$.

Applied at the parton level in DIPHOX and RESBOS

→ can only approximate the experimental isolation

- NLO theoretical uncertainties:
 - PDFs: 3-6%; use 44 eigenvectors from CTEQ6.1M
 - Renormalization/factorization/fragmentation scales: ~10-20% depending on the observable; all scales simultaneously varied by ×2 up and down

Imply that

Theoretical predictions

- Experimental kinematic and isolation cuts are also applied to all theoretical calculations compared with the data:
 - Central photons required: |y| < 1.1

•	$E_T \ge 17 \text{ Ge}$		Total cross section (pb)	Imply that
•	Isolated in t	Data	$12.5 \pm 0.2_{\rm stat} \pm 3.7_{\rm syst}$	Imply that
		RESBOS	$11.3 \pm 2.4_{\rm syst}$	$eV \int \Delta R(\gamma,\gamma) \ge 0.4$
		DIPHOX	$10.6 \pm 0.6_{\rm syst}$	
		ΡΥΤΗΙΑ γγ+γj	9.2	
		ΡΥΤΗΙΑ γγ	5.0	

- NLO theoretical uncertainties:
 - PDFs: 3-6%; use 44 eigenvectors from CTEQ6.1M
 - Renormalization/factorization/fragmentation scales: ~10-20% depending on the observable; all scales simultaneously varied by ×2 up and down

Kinematic variables

$$M = \sqrt{\left(p_{\gamma 1}^{\mu} + p_{\gamma 2}^{\mu}\right)^2}$$

$$P_{\mathrm{T}} = \left| \left(\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2} \right) - \left(\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2} \right) \cdot \hat{\mathbf{z}} \right|$$

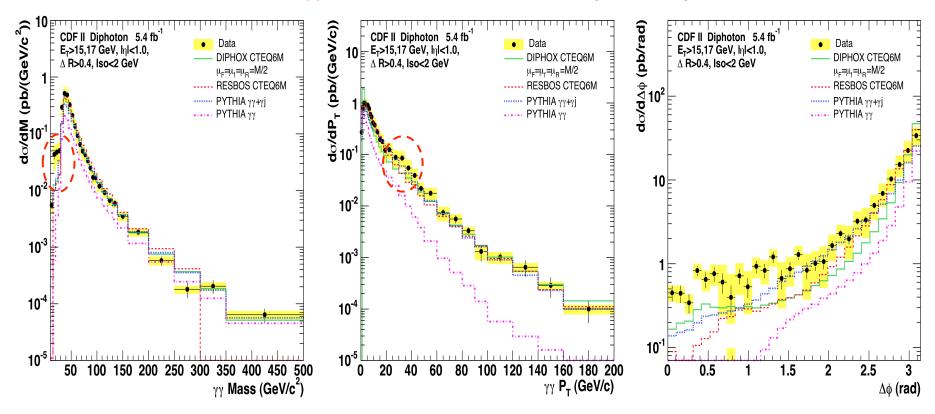
$$\Delta \phi = \left| \phi_{\gamma 1} - \phi_{\gamma 2} \right| \mod \pi$$

$$Y_{\gamma\gamma} = \tanh^{-1} \frac{\left(\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2}\right) \cdot \hat{z}}{\left|\vec{p}_{\gamma 1}\right| + \left|\vec{p}_{\gamma 1}\right|}$$

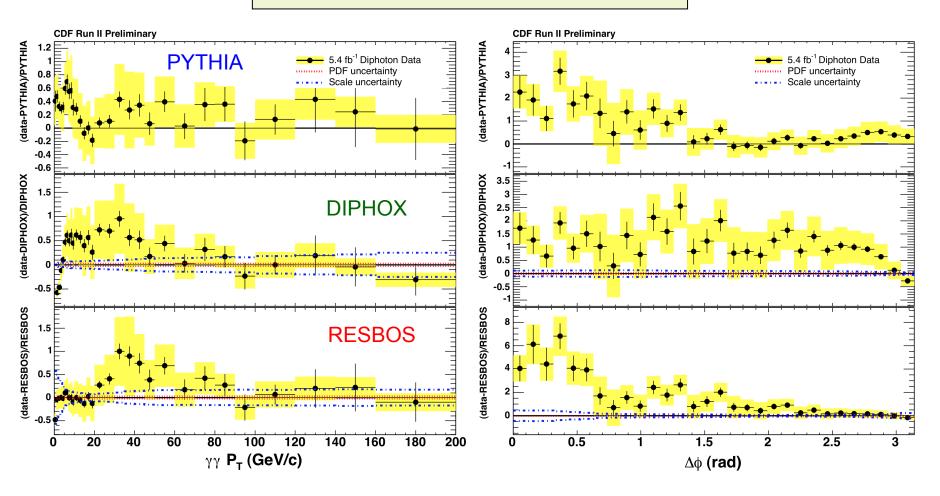
$$z = \frac{p_{\mathrm{T}\gamma}^{<}}{p_{\mathrm{T}\gamma2}^{>}}$$

$$\cos\theta = \frac{2p_{\text{T}\gamma 1}p_{\text{T}\gamma 2}\sinh(y_{\gamma 1} - y_{\gamma 2})}{M\sqrt{M^2 + P_{\text{T}}^2}} \begin{cases} \cos\theta \to \tanh\frac{y_{\gamma 1} - y_{\gamma 2}}{2} \approx 0 & (P_{\text{T}} << M) \\ \cos^2\theta \to \frac{4p_{\text{T}\gamma 1}p_{\text{T}\gamma 2}}{\left(p_{\text{T}\gamma 1} + p_{\text{T}\gamma 2}\right)^2} \approx 1 & (P_{\text{T}} >> M) \end{cases}$$

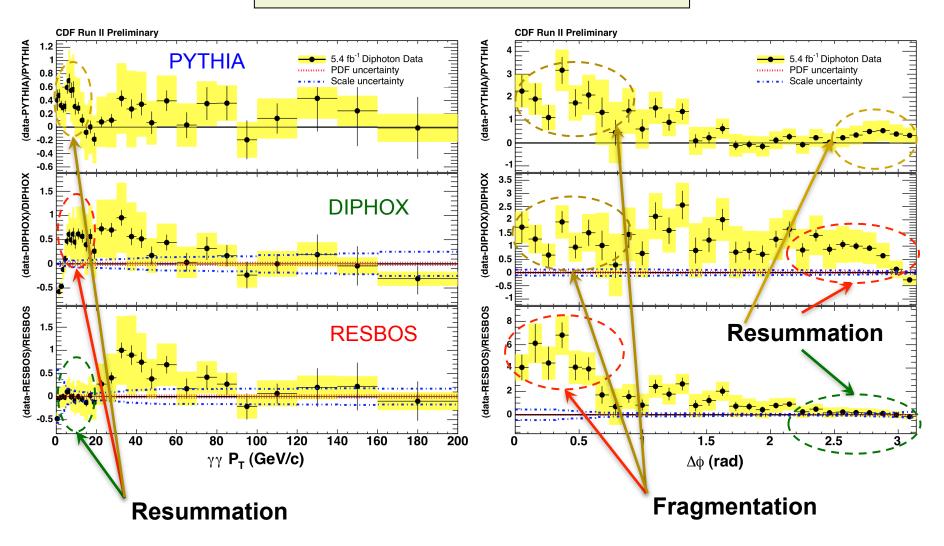
$$\cos\theta \rightarrow \tanh\frac{y_{\gamma 1} - y_{\gamma 2}}{2} \approx 0 \ (P_{\rm T} << M)$$


$$\cos^2\theta \rightarrow \frac{4p_{\mathrm{T}\gamma\mathrm{I}}p_{\mathrm{T}\gamma\mathrm{2}}}{\left(p_{\mathrm{T}\gamma\mathrm{I}} + p_{\mathrm{T}\gamma\mathrm{2}}\right)^2} \approx 1 \ \left(P_{\mathrm{T}} >> M\right)$$

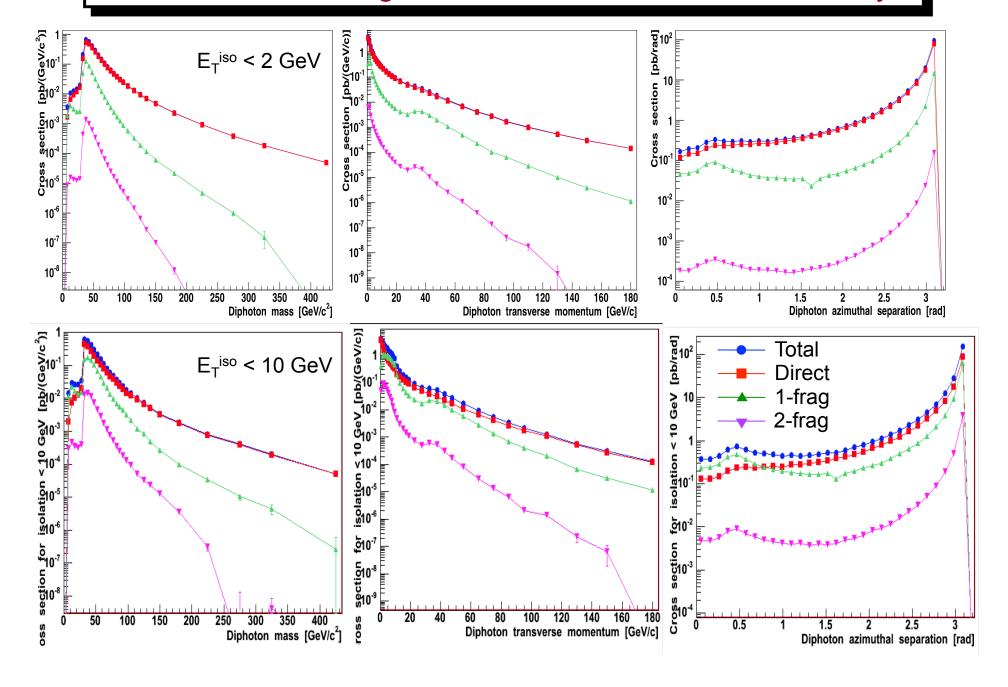
Cosine of the leading photon polar angle in the Collins-Soper frame (yy rest frame with the polar axis bisecting the angle between the colliding hadrons)

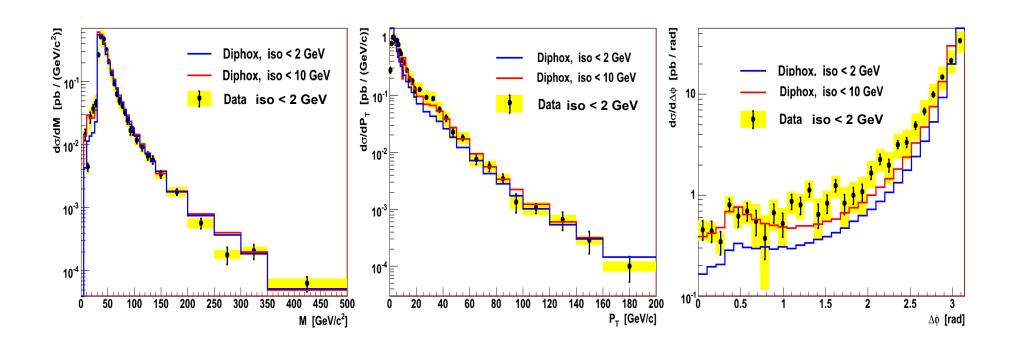

Differential cross sections

PYTHIA yy fails both in scale and in shape in all spectra

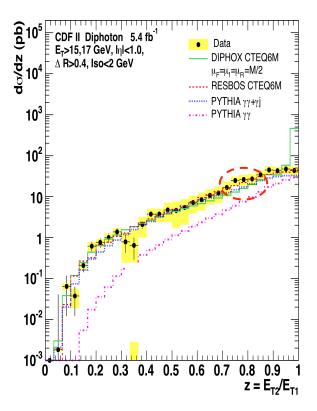


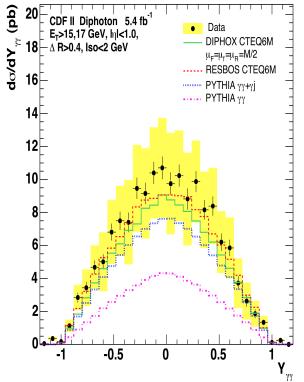
- Good agreement between data and theory for M_{yy}>30 GeV/c²
- Resummation important for P_T(γγ) > 20 GeV/c
- Fragmentation causes excess of data over theory for $P_T(\gamma\gamma) = 20 50$ GeV/c (the "Guillet shoulder")
- Resummation important for $\Delta \phi_{\gamma\gamma} > 2.2 \text{ rad}$
- Data spectrum harder than predicted

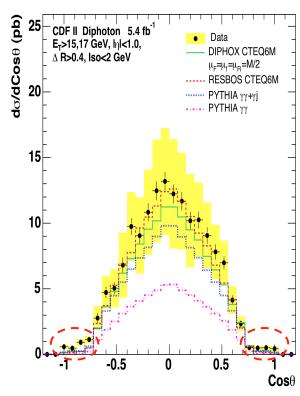

Data-to-theory cross section ratios


Data-to-theory cross section ratios

A closer look at fragmentation: DIPHOX isolation study

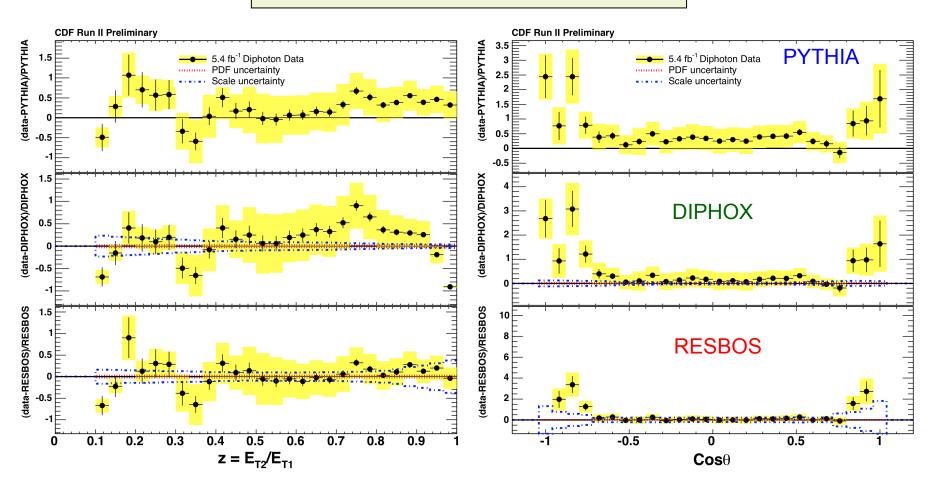


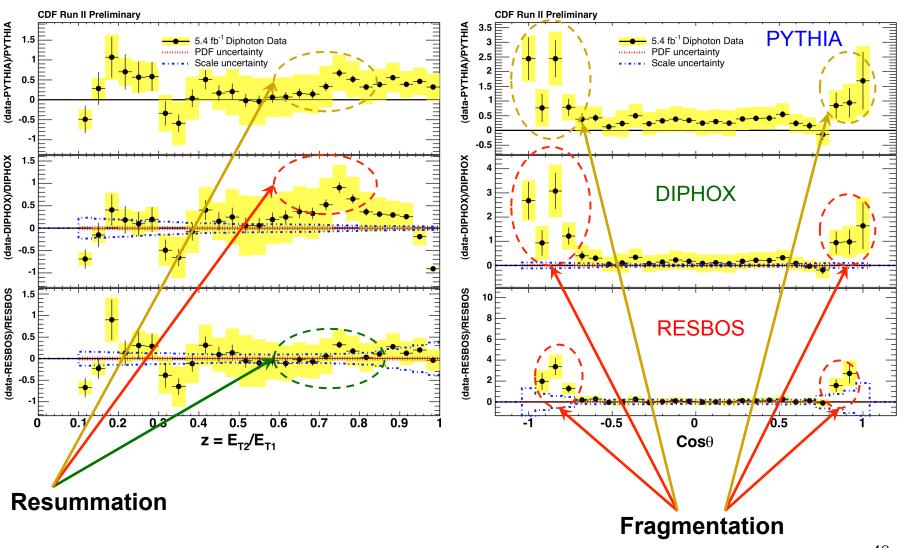

A closer look at fragmentation: DIPHOX isolation study



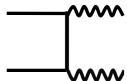
Fragmentation strength is missing from the DIPHOX calculation possibly because of the approximate application of the isolation requirement at the parton level

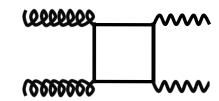
Differential cross sections





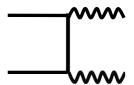
- Good agreement between data and RESBOS
- Good agreement between data and DIPHOX, except for 0.7<z<0.8
- Good agreement between data and theory
- Good agreement between data and theory, except for |cosθ*|→1

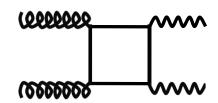

Data-to-theory cross section ratios



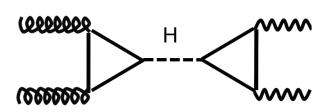
Data-to-theory cross section ratios

 Dominated by direct production with low P_T from gluon ISR

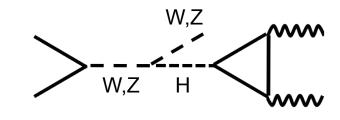


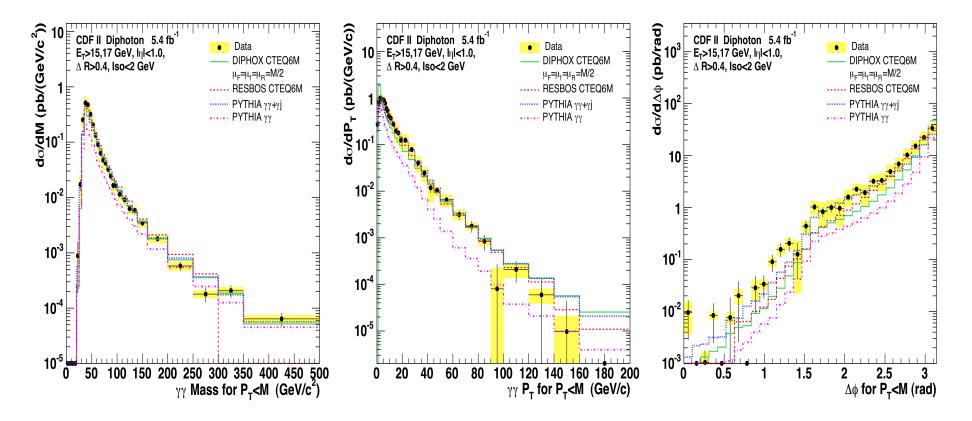

 Case kinematically similar to a Higgs boson produced by gluon fusion

 But a Higgs boson from vector boson fusion or vector boson associated production may have large P_T


$$W,Z$$
 H
 W,Z
 W,Z

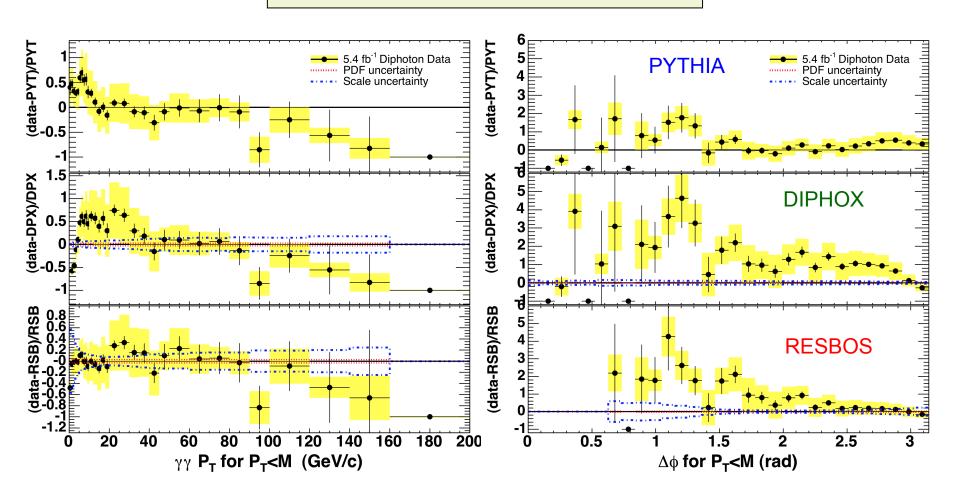
 Dominated by direct production with low P_T from gluon ISR

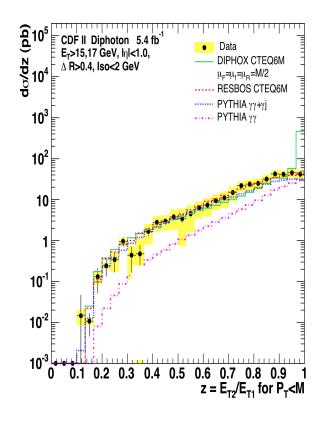

 Case kinematically similar to a Higgs boson produced by gluon fusion

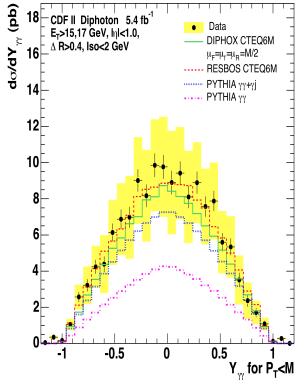

Cut only ~1.5% of ggH events @ m_H = 115 GeV/ c^2

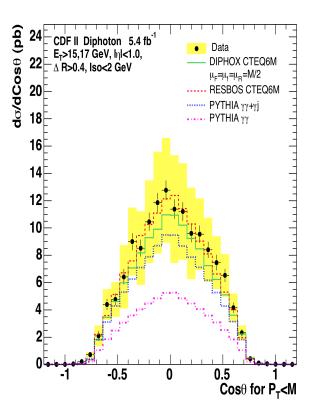
 But a Higgs boson from vector boson fusion or vector boson associated production may have large P_T

$$W,Z$$
 H
 W,Z
 W,Z

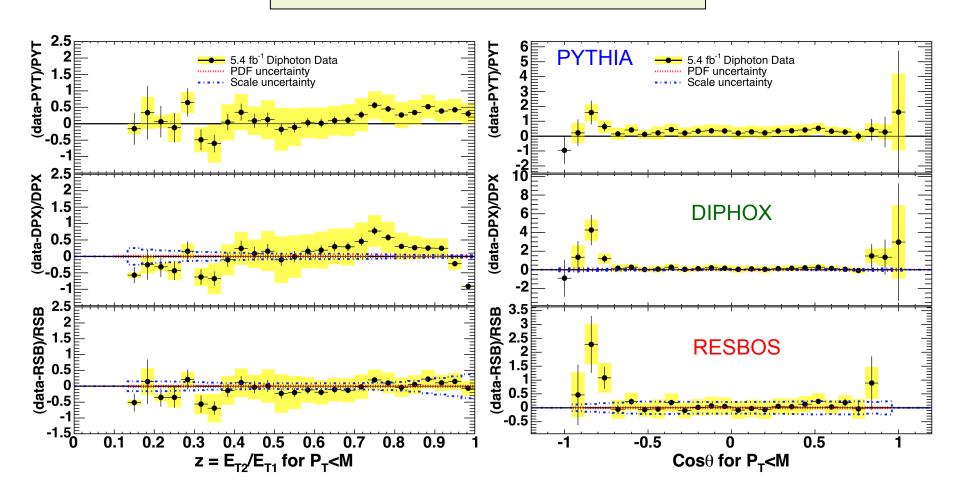


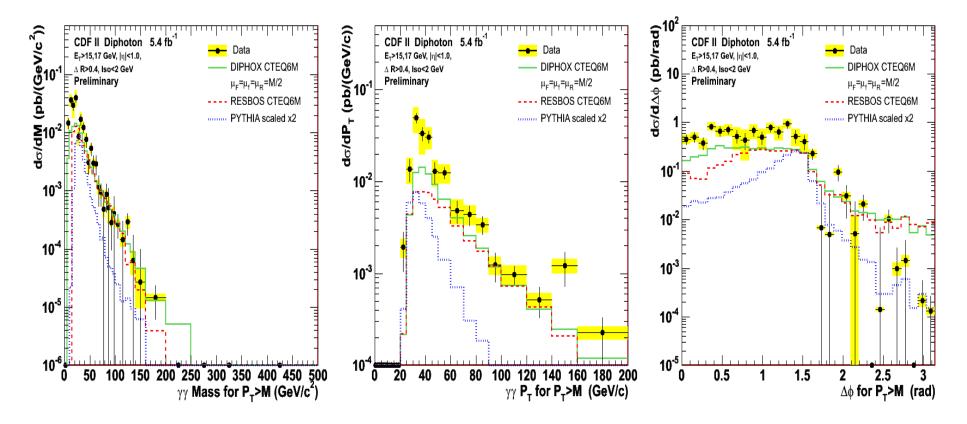

Cut ~20% of the VH+VBF events, i.e. ~6% of the signal @ $m_H = 115 \text{ GeV/c}^2$



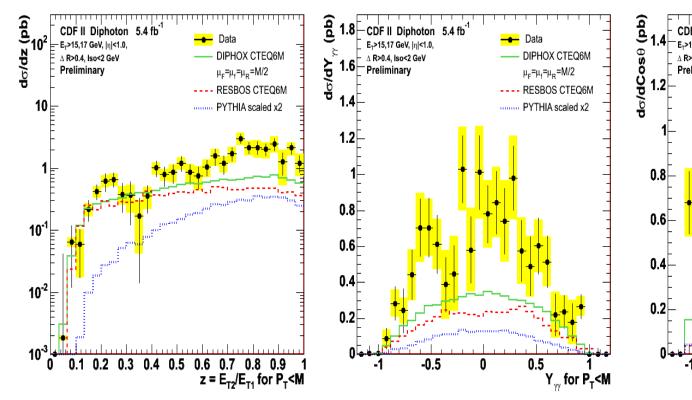

- Good agreement between data and theory
- "Shoulder" in data for $P_T(\gamma\gamma) = 20 50 \text{ GeV/c}$ signifcantly reduced
- Discrepancies between data and theory for $\Delta \varphi_{\gamma\gamma}$ < 1.7 rad reduced

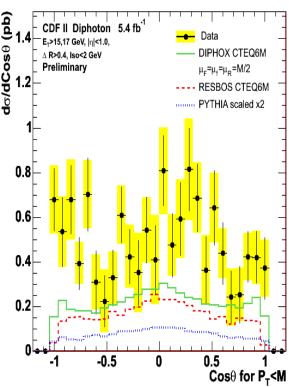
Data-to-theory cross section ratios for $P_T(\gamma\gamma) < M(\gamma\gamma)$




- Good agreement between data and RESBOS
- Good agreement between data and DIPHOX, except for 0.7<z<0.8
- Good agreement between data and theory
- Good agreement between data and theory

Data-to-theory cross section ratios for $P_T(\gamma\gamma) < M(\gamma\gamma)$




This case involves strong contributions from Compton-like scattering and fragmentations producing photon pairs with small $\Delta R(\gamma, \gamma)$

- Theory underestimates the data at the peak $M_{\gamma\gamma} \sim 30 \text{ GeV/c}^2$
- Theory underestimates the data for P_T(γγ) < 90 GeV/c
- Theory underestimates the data for $\Delta \phi_{yy} < 1.7$ rad

- Theory underestimates the data
- Theory underestimates the data
- Theory underestimates the data

Summary and conclusions

- This is the most complete measurement of prompt diphoton production cross sections conducted so far see PRL [107, 102003 (2011); arXiv: 1106.5123] and PRD [D 84, 5, 052006 (2011); arXiv:1106.5131] references.
- ➤ The measurements are compared to state-of-the-art theoretical predictions such as **DIPHOX**, **RESBOS**, and **PYTHIA**. Overall agreement between data and theory, within known limitations, is observed.
- Resummation matched with NLO pQCD calculations works well at low $P_T(\gamma\gamma)$ (< 20 GeV/c) and large $\Delta\phi_{\gamma\gamma}$ (> 2.2 rad).
- Fragmentation appears to be not under good control in sensitive kinematic regions [M($\gamma\gamma$) < 60 GeV/c², 20 GeV/c < P_T($\gamma\gamma$) < 50 GeV/c, $\Delta\phi_{\gamma\gamma}$ < 1 rad].
- The poor theoretical description of data regions sensitive to fragmentation raises a caveat: More sophisticated isolation methods are required to further reduce fragmentation contributions
- Parton-shower Monte Carlo provides a description of the data competitive with full NLO calculations by including ISR and FSR photons, which add some NLO features to the calculation as well as an approximation of fragmentation.

Impact on searches of undiscovered particles

- The success of parton-shower Monte Carlo is important for the search of a low-mass Higgs boson and of new physics:
 - Provides a reliable background model for these searches in the framework of realistic event representation suitable for simulation of collider experiments
 - Can be used in the Higgs -> γγ search based on a multivariate analysis that exploits the full γγ event information all kinematic variables that can help discriminate Higgs boson decays from QCD γγ events: see D0's PRL (arXiv:1107.4587) reference
 - Can also be used in searches of new physics in the mass range where data are not enough to model the QCD background by data-driven methods

Impact on searches of undiscovered particles

- The success of parton-shower Monte Carlo is important for the search of a low-mass Higgs boson and of new physics:
 - Provides a reliable background model for these searches in the framework of realistic event representation suitable for simulation of collider experiments
 - Can be used in the Higgs

 γγ search based on a multivariate analysis that exploits the full γγ event information all kinematic variables that can help discriminate Higgs boson decays from QCD γγ events: see D0's PRL (arXiv:1107.4587) reference
 - Can also be used in searches of new physics in the mass range where data are not enough to model the QCD background by data-driven methods
- \rightarrow CDF recently measured a limit on H \rightarrow $\gamma\gamma$ using a mass scan of 7 fb⁻¹ of data:

http://theory.fnal.gov/jetp/talks/FNAL_wc_Hgamgam.ppt

The sensitivity of this search can be significantly improved by updating the search using a multivariate analysis based on the PYTHIA γγ+γj model of the QCD background.